2,194 research outputs found

    INTCAL98 Radiocarbon Age Calibration, 24,000–0 cal BP

    Full text link

    Bayesian evaluation of the southern hemisphere radiocarbon offset during the holocene

    Get PDF
    While an interhemispheric offset in atmospheric radiocarbon levels from AD 1950–950 is now well established, its existence earlier in the Holocene is less clear, with some studies reporting globally uniform 14C levels while others finding Southern Hemisphere samples older by a few decades. In this paper, we present a method for wiggle-matching Southern Hemisphere data sets against Northern Hemisphere curves, using the Bayesian calibration program OxCal 4.1 with the Reservoir Offset function accommodating a potential interhemispheric offset. The accuracy and robustness of this approach is confirmed by wiggle-matching known-calendar age sequences of the Southern Hemisphere calibration curve SHCal04 against the Northern Hemisphere curve IntCal04. We also show that 5 of 9 Holocene Southern Hemisphere data sets are capable of yielding reliable offset information. Those data sets that are accurate and precise show that interhemispheric offset levels in the Early Holocene are similar to modern levels, confirming SHCal04 as the curve of choice for calibrating Southern Hemisphere samples

    A Comparison of Bone Pretreatment Methods for AMS Dating of Samples >30,000 BP

    Get PDF

    Revised calendar date for the Taupo eruption derived by š⁴C wiggle-matching using a New Zealand kauri š⁴C calibration data set

    Get PDF
    Taupo volcano in central North Island, New Zealand, is the most frequently active and productive rhyolite volcano on Earth. Its latest explosive activity about 1800 years ago generated the spectacular Taupo eruption, the most violent eruption known in the world in the last 5000 years. We present here a new accurate and precise eruption date of AD 232 ± 5 (1718 ± 5 cal. BP) for the Taupo event. This date was derived by wiggle-matching 25 high-precision ¹⁴C dates from decadal samples of Phyllocladus trichomanoides from the Pureora buried forest near Lake Taupo against the high-precision, first-millennium AD subfossil Agathis australis (kauri) calibration data set constructed by the Waikato Radiocarbon Laboratory. It shows that postulated dates for the eruption estimated previously from Greenland ice-core records (AD 181 ± 2) and putative historical records of unusual atmospheric phenomena in ancient Rome and China (c. AD 186) are both untenable. However, although their conclusion of a zero north–south ¹⁴C offset is erroneous, and their data exhibit a laboratory bias of about 38 years (too young), Sparks et al. (Sparks RJ, Melhuish WH, McKee JWA, Ogden J, Palmer JG and Molloy BPJ (1995) ¹⁴C calibration in the Southern Hemisphere and the date of the last Taupo eruption: Evidence from tree-ring sequences. Radiocarbon 37: 155–163) correctly utilized the Northern Hemisphere calibration curve of Stuiver and Becker (Stuiver M and Becker B (1993) High-precision decadal calibration of the radiocarbon timescale, AD 1950–6000 BC. Radiocarbon 35: 35–65) to obtain an accurate wiggle-match date for the eruption identical to ours but less precise (AD 232 ± 15). Our results demonstrate that high-agreement levels, indicated by either agreement indices or χ² data, obtained from a ¹⁴C wiggle-match do not necessarily mean that age models are accurate. We also show that laboratory bias, if suspected, can be mitigated by applying the reservoir offset function with an appropriate error value (e.g. 0 ± 40 years). Ages for eruptives such as Taupo tephra that are based upon individual ¹⁴C dates should be considered as approximate only, and confined ideally to short-lived material (e.g. seeds, leaves, small branches or the outer rings of larger trees)

    Radiocarbon dates from the Oxford AMS system: archaeometry datelist 35

    Get PDF
    This is the 35th list of AMS radiocarbon determinations measured at the Oxford Radiocarbon Accelerator Unit (ORAU). Amongst some of the sites included here are the latest series of determinations from the key sites of Abydos, El MirĂłn, Ban Chiang, Grotte de Pigeons (Taforalt), Alepotrypa and Oberkassel, as well as others dating to the Palaeolithic, Mesolithic and later periods. Comments on the significance of the results are provided by the submitters of the material

    Reconstructing the accumulation history of a saltmarsh sediment core: which age-depth model is best?

    Get PDF
    Saltmarsh-based reconstructions of relative sea-level (RSL) change play a central role in current efforts seeking to quantify the relationship between climate and sea-level rise. The development of an accurate chronology is pivotal, since errors in age-depth relationships will propagate to the final record as alterations in both the timing and magnitude of reconstructed change. A range of age-depth modelling packages are available but differences in their theoretical basis and practical operation mean contrasting accumulation histories can be produced from the same dataset. We compare the performance of five age-depth modelling programs (Bacon, Bchron, Bpeat, Clam and OxCal) when applied to the kinds of data used in high resolution, saltmarsh-based RSL reconstructions. We investigate their relative performance by comparing modelled accumulation curves against known age-depth relationships generated from simulated stratigraphic sequences. Bpeat is particularly sensitive to non-linearities which, whilst maximising the detection of small rate changes, has the potential to generate spurious variations, particularly in the last 400 years. Bacon generally replicates the pattern and magnitude of change but with notable offsets in timing. Bchron and OxCal successfully constrain the known accumulation history within their error envelopes although the best-fit solutions tend to underestimate the magnitude of change. The best-fit solutions of Clam generally replicate the timing and magnitude of changes well, but are sensitive to the underlying shape of the calibration curve, performing poorly where plateaus in atmospheric 14C concentration exist. We employ an ensemble of age-depth models to reconstruct a 1500 year accumulation history for a saltmarsh core recovered from Connecticut, USA based on a composite chronology comprising 26 AMS radiocarbon dates, 210Pb, 137Cs radionuclides and an historical pollen chronohorizon. The resulting record reveals non-linear accumulation during the late Holocene with a marked increase in rate around AD1800. With the exception of the interval between AD1500 and AD1800, all modelsproduce accumulation curves that agree to within ~10 cm at the century-scale. The accumulation rate increase around AD1800 is associated with the transition from a radiocarbon-based to a 210Pb dominated chronology. Whilst repeat analysis excluding the 210Pb data alters the precise timing and magnitude of this acceleration, a shift to faster accumulation compared to the long-term rate is a robust feature of the record and not simply an artefact of the switch in dating methods. Simulation indicates that a rise of similar magnitude to the post-AD1800 increase (detrended increase of ~16 cm) is theoretically constrained and detectable within the radiocarbon-dated portion of the record. The absence of such a signal suggests that the recent rate of accumulation is unprecedented in the last 1500 years. Our results indicate that reliable (sub)century-scale age-depth models can be developed from saltmarsh sequences, and that the vertical uncertainties associated with them translate to RSL reconstruction errors that are typically smaller than those associated with the most precise microfossil-based estimates of palaeomarsh-surface elevation

    Determination of burial age of the "Augustus' villa" (Italy)

    Full text link

    Bayesian Analysis of Radiocarbon Dates

    Get PDF
    • …
    corecore